Urotensin II receptor antagonist attenuates monocrotaline-induced cardiac hypertrophy in rats.

نویسندگان

  • Shan Gao
  • Young-Bin Oh
  • Amin Shah
  • Woo Hyun Park
  • Myoung Ja Chung
  • Young-Ho Lee
  • Suhn Hee Kim
چکیده

Urotensin II (UII) is a vasoactive peptide with potent cardiovascular effects through a G protein-coupled receptor. Hypoxia stimulates the secretion of UII and atrial natriuretic peptide (ANP). However, the effect of UII on hypoxia-induced cardiac hypertrophy is still controversial. The present study was conducted to determine whether human UII (hUII)-mediated ANP secretion influences hypoxia-induced cardiac hypertrophy using in vitro and in vivo models. Hypoxia caused an increase in ANP secretion and a decrease in atrial contractility in isolated perfused beating rat atria. hUII (0.01 and 0.1 nM) attenuated hypoxia-induced ANP secretion without changing the atrial contractility, and the hUII effect was mediated by the UII receptor signaling involving phospholipase C, inositol 1,3,4 trisphosphate receptor, and protein kinase C. Rats treated with monocrotaline (MCT, 60 mg/kg) showed right ventricular hypertrophy with increases in pulmonary arterial pressure and its diameter and plasma levels of UII and ANP that were attenuated by the pretreatment with an UII receptor antagonist, urantide. An acute administration of hUII (5 μM injection plus 2.5 μM infusion for 15 min) decreased the plasma ANP level in MCT-treated rats but increased the plasma ANP level in MCT plus urantide-treated and sham-operated rats. These results suggest that hUII may deteriorate MCT-induced cardiac hypertrophy mainly through a vasoconstriction of the pulmonary artery and partly through the suppression of ANP secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension

BACKGROUND Endothelin-1 signalling plays an important role in pathogenesis of pulmonary hypertension. Although different endothelin-A receptor antagonists are developed, a novel therapeutic option to cure the disease is still needed. This study aims to investigate the therapeutic efficacy of the selective endothelin-A receptor antagonist TBC3711 in monocrotaline-induced pulmonary hypertension i...

متن کامل

Endogenous endothelin-1 mediates cardiac hypertrophy and switching of myosin heavy chain gene expression in rat ventricular myocardium.

OBJECTIVES We investigated the role of endogenous endothelin-1 in the development of cardiac hypertrophy in vivo under pressure overload conditions. BACKGROUND Endothelin-1, a potent vasoconstrictor peptide, has recently been shown to act as a growth factor of myocardial cells in culture. METHODS We examined the effect of an endothelin-A receptor antagonist (FR139317) on the development of ...

متن کامل

EP4 Agonist L-902,688 Suppresses EndMT and Attenuates Right Ventricular Cardiac Fibrosis in Experimental Pulmonary Arterial Hypertension

Right ventricular (RV) hypertrophy is characterized by cardiac fibrosis due to endothelial-mesenchymal transition (EndMT) and increased collagen production in pulmonary arterial hypertension (PAH) patients, but the mechanisms for restoring RV function are unclear. Prostanoid agonists are effective vasodilators for PAH treatment that bind selective prostanoid receptors to modulate vascular dilat...

متن کامل

PRX-08066, a novel 5-hydroxytryptamine receptor 2B antagonist, reduces monocrotaline-induced pulmonary arterial hypertension and right ventricular hypertrophy in rats.

Pulmonary arterial hypertension (PAH) is a life-threatening disease that results in right ventricular failure. 5-((4-(6-Chlorothieno[2,3-d]pyrimidin-4-ylamino)piperidin-1-yl)methyl)-2-fluorobenzonitrile monofumarate (PRX-08066) is a selective 5-hydroxytryptamine receptor 2B (5-HT2BR) antagonist that causes selective vasodilation of pulmonary arteries. In the current study, the effects of PRX-08...

متن کامل

Chronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB /p38 pathway

Objective(s): Inflammation is involved in various forms of pulmonary arterial hypertension (PAH). Although the pathophysiology of PAH remains uncertain, NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) has been reportedto be associated with many inflammatory mediators of PAH. This study aimed to evaluate the effect of chronic intermittent hypobaric hypoxia (CIHH) on pulmonary inflammat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 299 6  شماره 

صفحات  -

تاریخ انتشار 2010